对医药纯化水管道系统设计的探讨(上)
公司动态 | 水处理知识 | 行业新闻 | 成交项目喜报 |

对医药纯化水管道系统设计的探讨(上)

发布日期:2019-10-28 浏览次数:2405

纯化水是制药工业生产中极其重要的一种原料,它必须符合药典标准, 根据中国药典、欧盟药典、美国药典等 ,纯化水在总有机碳、细菌内毒素、微生物限度、PH、电导、易氧化物、重金属、硝酸盐、亚硝酸盐、氨等指标上有控制,这些指标中除了微生物、细菌内毒素二个指标以外,可以通过制水工艺来得到控制,当纯化水在输送的期间,微生物在适宜的环境中就会生长,从而细菌内毒素增加。纯化水通常是连续生产的原料,难以在使用前安批次发放;微生物检查结果滞后于水的使用。为了确保纯化水的质量,设计一个能保质保量输送纯化水 的管道系统是极其重要的。


纯化水循环管路系统包括卫生级供水泵、在线消毒系统、定期消毒系统、管路、阀门、多种传感器和用水点等组成。


细菌存在于纯化水输送的循环管道系统中,为了控制微生物的生长,我们在设计和施工中采取了6个方面的措施,1:尽量维持高的管道流速。 2:使用光滑表面的管道。3:安装在线紫外线消毒和周期消毒装置 。4:使用卫生级的阀门。5:将死角和隐蔽处减到最少,例如:使用T型隔膜阀,几乎没有死角。6:以ASME BPE的标准进行施工。我们在设计纯化水管道系统时从以下几个方面来统筹考虑使微生物不宜在管道中繁殖。


一:纯化水管道流速的设计


纯化水输送管道系统应采取循环方式⑴,所有使用点都处在这一个循环管道上,管道内合理的流速设计有利于微生物的控制。从纯水泵以一定量的纯化水送出以后,通过循环管路到达各个使用点。当输送管为同一管径时,随着各使用点取水增加,越到管道后面,其管道内的流量就越小,其流速也越小,存在低于最低设计流速的风险,所以循环管道使用同一直径管道对纯化水系统是不合适的。一般设计选择渐变缩小管径,以便保证其后面管道也有较高的流速。但是,随着用水负荷的变化,有时会因为在循环管道上会增加使用点,而渐变缩小的管道又不能满足使用点的流量。简化管道流速匹配设计,常常把循环管道直径设计成二个管径,所有使用点前设计成一个较大直径的管道,最后一个使用点以后设计成较小管径的管道,这段管道我们称之为回水管道。


流体在管道内流动,从流体力学上可分成二种流动状态⑵,一种称之为层流(滞留),流体质点的运动迹线成轴向有条不紊运动,流体处于这样的流动状态下其雷诺数(Re)小于2300。另一种称之为湍流,流体质点的运动迹线不仅有轴向流动,同时又有径向流动,流体处于这样的流动状态下其雷诺数大于4000。流体的雷诺数处于2300~4000时,其流动状态为过渡状态,也称之为不稳定状态,由于流体的粘度不同,其过渡状态的雷诺数也不同,当雷诺数超过了10000以上所有流体都处在湍流状态。只有流体真正处于稳定的湍流状态下,流体中的质点才不至于停留在管壁上,由于微生物的分子量要比水分子量大得多,即使管壁处的轴向流速为零m/sec,而管壁处的径向流速不为零m/sec,此时管壁处微生物的动量大于管壁处水的动量,处于稳定状态的湍流中的微生物不易滞留在管壁上生长,在管壁上不易形成生物膜。所以雷诺数大于10000是设计纯化水管道管径的必需达到的条件。


ISPE指南中指出防止营养物聚集和细菌黏附在管壁所需要的流速要超过3ft/s或雷诺数大于湍流值⑸。从纯化水管道实际运行来看,当在大量用水的生产期间,保证管道中大于3ft/s流速或更高流速很容易做到,但是在不生产期间或低流量运行时,由于送出水管管径较大,在回水管道中的流速已经到达了水流速的上限时,送出水管的流速也达不到3ft/s。研究表明在低于3ft/s的流速,雷诺数达到20000以上的较低流速在全球许多大的制药公司普遍采用,并能保证管道中 不利于微生物附着生长的状态⑹。因此,以20000雷诺数以上为目标来设计送、回水管道的管径和流量更符合实际的需要 。


二:在线紫外线消毒器的选型


纯化水循环系统中安装在线紫外线消毒器主要是杀灭从制水系统中进入的微生物和循环水流中滋生的微生物,保证供出纯化水的微生物在规定的质量标准下。目前大部分的循环系统中都安装254nm的紫外线消毒器。


1:紫外线的杀菌原理


典型的微生物结构如图(1)所示,微生物的体内都含有RNA(核糖核酸)和DNA(脱氧核糖核酸),而RNA和DNA的共同特点是具有由磷酸二酯按照嘌呤与嘧啶碱基配对的原则相连的多核酸链,它对紫外光具有强烈的吸收作用。紫外线杀菌的原理一般认为它与破坏细胞内代谢、遗传、变异等现象起着决定性作用的核酸相关,波长在200~300nm之间的紫外线有杀灭作用,其中以254nm波长的紫外线灭菌效果最好。这是因为细胞中的DNA(脱氧核糖核酸)核蛋白的紫外吸收峰值正好在254~257nm之间⑶。


2:中、低压紫外杀菌装置


紫外线灯管一般常用低压灯管和中压灯管二种,低压紫外灯管管内气压<103Pa,杀菌用的紫外灯是发出254nm单色紫外光,单只灯管功率小于100W;中压紫外灯管管内气压104~106Pa,200nm~300nm多谱段连续紫外光输出,单只灯管功率高达7000W。微生物经过254nm的紫外光照射以后,其DNA就发生了变化,如图(2)、图(3)所示,紫外线灭菌器不能100%的把菌杀灭,低压灯管的杀菌效果常常以99.9%来作为衡量指标,或者说是3-log的去除。一些没有杀灭的微生物(受到损伤的),经过一定时间以后,其DNA会自我修复,所以传统的低压紫外线消毒能控制微生物的数量而无法确保完全杀灭微生物。


纯化水

图(1) 微生物典型结构


纯水


图(2) 紫外线照射前和照射后的DNA结构


纯化水


图(3) 微生物经低压紫外线照射后仅破坏DNA


从理论方面谈,细菌、病菌和病毒长期暴露在太阳光下面(日光中包括紫外线),几千年的时间,这些细菌、病菌和病毒必然产生对紫外线产生一些抗体,这种抗体在这里被人们称为活化酶。活化酶存在于细菌和病菌的细胞内,一旦细菌和病菌的DNA 受到损伤,这种活化酶就会发挥功效,帮助受损部分迅速恢复成原来的状态。这样一个反应过程被称为细菌和病菌的复活反应,在有光的情况下此种反应能进行的非常迅速 ,但同时也会发生在黑暗的状况下。而多谱段中压紫外线在作用于细菌和病菌的DNA 和RNA 的同时,也作用于这种活化酶,理论上有可能彻底杀灭生长状态的微生物 。实际试验数据也证明了这种理论,2002 年加拿大科学家曾经在实验室做个这样一个对比试验,如图(4)试验在完全相同的设计实验条件下进行,试验结果有效:


超纯水


图(4) 经低压和中压紫外线照射后微生物的光复活的对照试验


实验前,培养皿中均有 这个数量级的大肠杆菌,经紫外线照射后,大肠杆菌迅速下降 。试验显示,受到低压紫外线照射后的大肠杆菌迅速的复活和再生,能反弹至 数量级(有光条件下)。而受到中压紫外线照射后的大肠杆菌,无论是在有光或是黑暗的情况下,复活和再生反应都完全无法进行。因此,从上述试验结果提示 ,中压紫外线技术是一种比低压紫外线更持久的,更有效的杀菌技术, 如图(5)所示。


有些微生物在254nm不敏感,但是由于中压紫外灯管发出多谱段紫外光,所以对一些254nm不敏感的菌也有很好的杀菌效果,如图(6)所示。由于是多谱段紫外光,185nm的紫外线对TOC(总有机碳)有降解作用。多谱段紫外光对循环管道用臭氧、双氧水等进行灭菌后的残留有分解作用。


纯水


图(5) 微生物经中压紫外线照射后不仅破坏DNA还破坏其他组织


超纯水


图(6) 不同波长紫外线对不同微生物杀菌效率曲线


3:光强检测


紫外灯管实际点燃功率对杀菌效率影响很大,随着灯点燃时间的增加,灯的辐射能量随之降低,杀菌效果亦下降,所以紫外灯通常是点燃8000小时以后就下降到原来照射能量的60%以下。工厂以点燃8000小时和紫外灯相对指示强度表到60%以下作为更换灯管的依据。


杀菌效果是由微生物所接受的照射剂量决定的,表一是不同微生物对于紫外线辐射剂量的要求。


超纯水

表一




从上述公式看出,照射剂量不仅与紫外灯管的功率有关,同时与水的流量有关,流量越大,停留时间越短,照射剂量越小。按照紫外装置上的相对指示强度显示器显示的数值仅能反应紫外灯管的强度,并不能代表照射剂量。当瞬时纯化水用量增大时,相对指示强度就不能准确的反应杀菌效果。从表一和大量的实验数据总结出,以30mj/cm2的绝对照射剂量,更能保证纯化水在线杀菌效果。当紫外灯管从开始使用以后,其照射功率不断下降,特别是到接近寿命的终了时,在大水流量使用时照射剂量就会达不到30 mj/cm2,在控制显示系统上设定一个大于30 mj/cm2的警报值,提醒维护人员更换灯管,使得纯化水的运行一直在30 mj/cm2以上的安全剂量上运行。中压紫外灯管功率大、价格高,以30 mj/cm2的绝对照射剂量来决定更换灯管的指标,就废弃了8000小时更换灯管的指标,提高了灯管的利用率,节约了成本。利用在线紫外线最大有效的杀灭微生物,保证纯化水循环管道内持续受控是有积极意义的。